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PREDICTION OF FRICTION AND HEAr-TRANSFER COEFFICIENT5 
WITH L.ARGE VARIATIONS IN FLUID PROPERTIES 

by Maynard F. Taylor 

Lewis Research Center 

SUMMARY 

The conventional methods of predicting single- phase turbulent heat-transf e r  and 
friction coefficients often give values that a r e  in poor agreement with measured values 
when large variations in the fluid properties a r e  present. Heat-transf e r  and friction 

coefficients calculated by recently reported prediction equations were  compared with 
measured values for hydrogen, helium, nitrogen, air,  and carbon dioxide from several 
different investigations. 

For the case of heat extraction from a gas the heat-transfer coefficient can be  accu- 
rately predicted with the relation 

and for the case of heat addition with the relation 

where Nub is the bulk Nusselt number, Reb is the bulk Reynolds number, Prb is the 
bulk Prandtl number, Ts is the surface temperature, and Tb is the bulk temperature. 

For both heat extraction and heat addition to a gas the friction coefficient can be 

accurately predicted by the relation 

where f is  the friction coefficient, Res is the modified surface Reynolds number, Ts 

is the surface temperature, and Tb is the bulk temperature. 
For both friction and heat transfer the exponent of the temperature ratio T',/Tb is 

where x i s  the distance from the entrance of the test section and B is the inside di- 

ameter of the  t e s t  section,  These prediction equations a r e  applicable to gases flowing 
subsonieally t l~rough a smooth tube, 



INTRODUCTION 

Large variations in the physical properties sf gases f%owil:g ti-iubuiently through 
tubes have been fo~rnd to greatly affect the heat-transfer and friction coefficients. The 

conventional ??reference  temperaturess  methods ji. e. evaluating the properties and den- 

sity a t  a reference temperature Tx = X(Ts - Tb) + Tb) can predict coefficients that a r e  

greatly in e r r o r .  For  example, figure 1 shows that the measured friction coefficient 

Fluid Type of flow Type of fr ict ion Reference 
coefficient 

0 Ai r  Turbulent Local and 6 

(of Lewis) 

0 Helium Turbulent Local 11: 12 
0 Helium Laminar Average Unpublished data of Taylor (of Lewis) 
U Helium Laminar Local 10 

0 Q 0 Nitrogen Laminar Local 10 

average 
D A i r  Turbulent Local 11, 12 
0 A i r  Laminar and Average Unpublished data of Weiland 

turbulent  
A Carbon Turbulent Local and 6 

dioxide average 
Helium Turbulent Average 4 8 

0 Hydrogen Turbulent Average 4, 8 
0 Nitrogen Turbulent Local 9 

-- 
Mod~fied f i lm Reynolds number Ref = VDlvf 

Figure 1. - Variation of local and average f r ic t ion coefficients with modified f i lm Reynolds number. Viscosity and density evaluated at f i lm temperature. 

can be  as much a s  three  t imes the value predicted by the ~ L r m i n - ~ i k u r a d s e  equation 

with the physical properties evaluated at the film temperature Tf = (Ts + Tb)/2: 

E r r o r s  of the same  magnitude a r e  found when measured heat-transf e r  coefficients a r e  

compared with those calculated by 



Equations (1) and (2) a r e  applicable only for  developed flow, 

The use  of the ra t io  of surface to fluid-bulk temperatures  T ~ / T ~  raised to a power 

has  been very successful in correlating both friction coefficients (ref. I) and heat- 

t ransfer  coefficients (ref. 2) with large variations in the fluid properties.  The  study of 
available friction data (ref. 1) resulted in the recommendation that the modified surface 

Reynolds number Res = VD/v be used in correlating the friction coefficients. It ap- s 
peared that a modified surface Reynolds number of 3000 was crit ical,  and the following 

correlation equations were  recommended: 

F o r  Res < 3000: 

For  Re  2 3000: 
S 

T h e  recommended correlation equation for  heat addition (Ts/Tb > 1.0) to  hydrogen, 

helium, and nitrogen (ref. 2) is 

where 

Because of the grea t  interest  in hydrogen a s  a propellant for  both nuclear and ad- 

vanced chemical rockets,  a large amount of heat-transfer data has  been reported. 
These  data cover a wide range of conditions, inclildillg surface to  fluid-bulk ternpera- 

2 
l;lzre ratios to 23 and heat iXuw to 46 megawatts per square meter (28 Rtu/see-in, ), 



Even though equation~s (3) to (5) predict friction and heat-transfer coefficients with 

arvlueh greater  accuracy than has been possible l~eretofor  e, some interesting qrxestiol~s 
have been promfled by combining the friction and heat-transfer s h d i e s ,  One concerns 
the possibility of inserting the most recent exponent of T , / T ~  from the heat-transfer 
correlation equation (5) into the prior friction correlation equation (4) to make it appli- 
cable to smaller  values of x/D. Another point of importance is that the friction equa- 
tion (4) appears to apply to both heat addition ( T ~ / T ~  > 1.0) and heat extraction 
(Ts/Tb < 1. O), but the heat-transfer equation (5) has been tested only for Ts/Tb > 1.0. 
The question of the applicability of equation (5) to heat extraction (T,/T~ < 1.0) is cer- 
tainly of interest. This investigation explored and answered these two questions. 

SYMBOLS 

constant used in eq. (6) 

exponent of Ts/Tb 

specific heat a t  constant pressure 

inside diameter of test  section 

half bulk friction coefficient 

half film friction coefficient 

mass  flow ra te  per unit cross-sectional a rea  

local heat-transf e r  coefficient 

thermal conductivity of gas 

length of test section 

Nusselt number, hD/k 

Reynolds number, VD/v 

Prandtl number, c D/k 
P 

temperature 

velocity 

parameter used in reference temperature equation 

distance from entrance of tes t  section 

absolute viscosity of gas 

kinematie viseositgi of gas, y / p  

density of gas  



Subscripts: 

b fluid. bulk (denotes evaiuaiiol~ at fluid hulk temperature, Tb) 

cal calculated 

ex experimental 

f film (denotes evaluation at film temperature, Tf = (Ts + Tb)/2) 

s surface (denotes evaluation a t  surface temperature, Ts) 

CORRELATION EQUATIONS 

Heat-Transfer Coeff ic ients 

Several investigators have used the same basic equation 

(with C1 varying from 0.021 to 0.024 and C2 varying with x/D a s  shown in fig. 2) to  

.8  / 

.4 
Ratio of distance Reference 
f rom entrance 

of test section to 
inside diameter of 

test section, 
xlD 

-1.2 I I I I I I I I I I i I  
0 40 80 120 160 ZUO 240 

Dimensionless distance f rom entrance, x/D 

Figure 2. - Var iat ion of exponent of rat io of s i i r face to f l i i id-  
bulk teri lperatures w i th  ax ia l  distance fro111 entrar ice of test 
section. 



correlate  heat-trar~sfer coefficients for helium and air (ref, 3) ,  hydrogen and helium 

(ref. 41, and llltrogen (ref. 5) for T ~ / T ~  to 8. 0. The availability of hydrogen heal- 

t ransfer  data taken over a wide range of conditions led to a thorough sttrdy of both the 

data and the many proposed correlation equations (ref. 2). The  study recomlne~ided the 

use  of the correlation equation 

where 

for all single-phase flow outside the near- crit ical region and for  2 < x/D < 2 52. Equa- 

tion (5) was  used to  calculate more  then 3600 heat-transfer coefficients for hydrogen, 

and 87 percent deviated l e s s  than &2 5 percent f rom the measured coefficients. In addi- 

t ion to the  hydrogen data, 88 nitrogen gas and 359 helium gas heat-transfer coefficients 

were  predicted with equation (5), and 98 percent deviated l e s s  than &25 percent f rom the 

measured coefficients. All the data used in reference 2 involved heat addition to  the gas 

( T  > 1 and equation (5) was  not tes ted on data with heat extracted from the gas 

Ps /Tb  < 1). 
In the present  investigation, heat- t ransfer  coefficients f o r  heat extraction f rom air  and 

carbon dioxide (ref. 6)and a i r  (ref. 7 )were  used to tes t  equation (5)for i t s  applicability in 

the range 0.25 < Ts/Tb < 1.0. Predicted heat-transfer coefficients using equation (5) 

a r e  a s  much a s  twice the measured coefficients. These resu l t s  suggest that the t e rm 

( T ~ / ~ ~  1 C2 does not apply to  Ts/Tb < 1.0. To  determine the effect of T , / T ~  < 1 . 0  

on the heat-transfer coefficients, the t e r m  ( T / Tb rC2 was omitted from equation (5) to 

give 

Heat-transfer coefficients predicted using equation (7 )  a r e  in good agreement with the 

measured data, 8% percent of the calculated coefficients deviating l e s s  than +%5 percent 

f rom t h e  ~ n e a s u r e d  values. No effect of T ~ / T ~ )  appears to be present. 



Reference 6 also reported heat-tsansfer coefficients Lor Bleak addition to a i r  and 

carbon dioxide, Where equation (5) was used to predict these heat-transfer coefficients, 

93 percent of the calculated coefficients deviated l e s s  than k25 percent from the meas-  

ured values. 

Friction Coefficients 

The study of friction coefficients (ref. 1) which recommended the following equation 

f o r  modified su r f ace  Reynolds numbers of 3000 o r  greater  

used both local and average friction data fo r  both heat addition and extraction (refs.  4, 

6,  and 8 to 12). Equation (4) correlated local friction coefficients for  x/D f rom 

16 to 113. Because equation (5) correlates  heat-transfer coefficients fo r  an x/D a s  

low a s  2,  an obvious s tep is to u s e  the exponent of T , / T ~  f rom the heat-transfer equa- 

tion (5) in the friction equation (4), which gives 

where 

Local friction coefficients for heat extraction from a i r  and carbon dioxide (ref. 6) were  

compared with coefficients predicted using equation (8), and the agreement was  very 

good for  5 < x/D < 57 (the limit of the experimental data with the exception of the f i r s t  

data point which was a t  an x/D = 1. 57). Equation (8) predicts local friction coefficients 

which a r e  in good agreement with measured values for both heat extraction 

(0. 3 < T,/Tb < 1. 0) and heat addition (1. 0 < Ts/Tb < 7. 35) for x/D from 5 to  113. 



DISCUSSION OF RESULTS 

Heat-Transfer C o e f f i c i e ~ ~ t s  

The relation shown in equation ( 9 )  was used to calculate heat-transfer coefficients 
for heat extraction from ai r  and carbon dioxide (ref. 6) and a i r  (ref. 7). The coeffi- 

cients for air and carbon dioxide (ref. 6) were calculated using equation (7), with 80 per- 
cent of them deviating less  than *I5 percent from the measured coefficients for x/D 
from 5 to 52. Air data (ref. 7) measured only in the entrance section of a tube at x/D 
of 1. 5, 4, 7, and 10 were also calculated using equation (7), with 86 percent of the cal- 
culated values deviating less  than -+I5 percent from the measured values for x/D of 4, 

7, and 10. The calculated coefficients at x/D of 1. 5 ran  15 to 30 percent lower than 
measured values. 

The additional data for heat added to a i r  and carbon dioxide (ref. 6) were local 
heat-transfer coefficients for x/D from 0.22 to 59 and Ts/Tb to  2.8. Using equa- 
tion (5), 98 percent of the calculated heat-transfer coefficients for a i r  deviated l e s s  than 
*15 percent for x/D from about 2 to  59. The calculated values for carbon dioxide for 
the same X/D did not agree a s  well a s  the a i r  data, with 88 percent deviating less  than 
*25 percent. Table I summarizes the results of both the present investigation and ref- 
erence 2. 

TABLE I. - PERCENT OF  PREDICTED LOCAL HEAT-TRANSFER 

COEFFICIENTS THAT DEVIATE LESS THAN i 2 5  PERCENT 

FROM EXPERIMENTAL COEFFIClENTS 

FOR VARIOUS GASES 

Heat added to gas, 1.0 < T ~ / T ~  < 23; calculations used eq. (5) 

Heat extracted fronl gas, 0 . 2 5  < Ts/Tb < 1. 0: calculations used eq. (7)  

Gas 

Carbon dioxide 

Number of  data points Percent of heal that deviate less 

than *25 percent from hex 



Friction Coefficients 

The relation shown in equation (8) was used to calculate 1100 friction coefficients 

for heat extraction from a i r  and carbon dioxide (ref. 6) for 0. 3 < T,/Tb < 1. O and 

5 < x/D < 52. Of the 1100 friction coefficients calculated, 94 percent deviated l e s s  than 

*I5 percent and 88 percent deviated l e s s  than 4 0  percent f rom the measured values. 

Figure 3 shows the product of the friction coefficient and the temperature ratio cor- 
rection factor  a s  a function of the modified surface Reynolds number. A total of 1523 

Fluid Type of f r ict ion coefficient Reference 

o A i r  Local and average 6 
0 A i r  Local 11, 12 
o A i r  Average Unpublished data of Weiland (of Lewis) 
9 A i r  Average, L O  < TSKb < 1.3 Unpublished data of Weiland (of Lewis) 
A Carbon dioxide Local and Average 6 
0 Helium Local 11, 12 

8x103 
Helium Average 4, 8 

a Hydrogen Average 4, 8 
0 Nitrogen Local 9 

1 
3 4 -  6 8 1 0  20 40 60 80 100 200 400 600 800x10~ 

Modified surface Reynolds number, ReS = VDlvs 

Figure 3. - Correlation of local and average fr ict ion coefficients for modified surface Reynolds 
numbers of NOQ and greater. Density i n  f r i c t ion  coefficients evaluated at bulk temperature; 
viscosity i n  Reynolds number evaluated at surface temperature; 1523 data points i n  turbulent 
region. I n  ordinate Dlx applies to local coefficients, DIL should be used for average coefficients. 

friction coefficients f o r  both the heating and cooling of gases  were  calculated using 

equation (9); 95 percent of the data a r e  within n15 percent and 89 percent fall within 
+.I0 percent of the correlation line. The data in figure 3 indicate a lack of a transition 

region, except f o r  the few points fo r  a i r  with a T , / T ~  < 1. 3 that fall below the corre-  

lation line. Thus, it appears that the large variations in the fluid properties tend to 

make the flow turbulent a t  modified surface Reynolds numbers of 3000 o r  more. 



Single-phase hea t - t rmsfer  and friction coefficients for  hydrogen, helium, nitrogen, 

a i r ,  and carbon dioxide with la rge  variations in the physical properties have been 

studied. The coefficients were  measured over a w ~ d e  range of conditions outside t"ne 

near-crit ical region for  subsonic flow through smooth s t raight  tubes. F o r  the condi- 
tions stated, the following conclusions may be made: 

1. F o r  heat extraction f rom air and carbon dioxide with 0.25 < Ts/Tb < 1.0 and 

4 < x/D < 52, there appears  to be no discernable effect of either x/D o r  Ts/Tb on 

the heat-transfer coefficient and the equation 

where Nub is the bulk Nusselt number, Reb is the bulk Reynolds number V D / V ~ ,  and 

Pr is the bulk Prandtl  number, is recommended to predict heat-transfer coefficients. b 
Using this equation, 80 percent of the calculated heat-transfer coefficients deviated l e s s  

than *15 percent and 90 percent deviated l e s s  than &25 percent. 

2. F o r  heat addition to hydrogen, helium, nitrogen, a i r ,  and carbon dioxide with 

1.0 < Ts/Tb < 23 and 2 < x/D 252, there  i s  a s t rong effect of both x/D and Ts/Tb. 

A total of 4900 heat-transfer coefficients w e r e  calculated with the relation 

where 

and Nub, Reb, and Prb a r e  the bulk Nusselt, Reynolds, and Prandtl  numbers, r e -  

spectively, Ts is the surface temperature,  Tb is the fluid-bulk temperature,  x is the 

axial distance from the entrance, and D is the inside diameter of the tube. Ninety per- 

cent of the calculated coefficients deviated l e s s  than ~ t 2 5  percent f rom the measured 

values. 

3, Friction coefficients "lor heat addition to  hydrogen, ileiium, nitrogen, air, and 

carbon dioxide with T , /T~  to 7 .35  and 5 < x/D < 200 and heat extraction from air 



and carbon dioxide with Ts/Tb as low as 0.30 and 5 < x/D < 57 all show an effect of 

both x/D and T ~ / T ~  and have been accurately predicted by the relation 

where Res is the modified surface Reynolds number VD/vs, Ts is the surface tem- 
perature,  Tb is the fluid-bulk temperature,  x is the axial distance f rom the entrance, 
and D is the inside diameter of the tube. Of the 1100 friction coefficients calculated, 
88 percent deviated l e s s  than &10 percent and 94 percent deviated l e s s  than &15 percent 
f rom the measured values. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, December 30, 1970, 

122-29. 
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